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We present detailed analysis of calibration process error for electro-optical detection systems, which can be 
simplified as the plane rotation around a non-orthogonal axis. By means of octonions it firstly proves that the 
plane rotation around a non-orthogonal axis can be decomposed into rotations around two perpendicular axes. 
The rotation is further divided into three steps, and the calibration error is hence discussed and obtained. The 
simulation and test results indicate that there are large calibration errors in calibration process. The pointing 
error can be effectively improved after separating error components, which provides a more accurate set data 
for further compensation.
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Electro-optical detection systems (EODSs) are widely 
used to collect targets’ location information in sci-
entific, military, and commercial applications. They 
are often installed on vehicles, ships, aircrafts, and 
spacecraft[1–3]. The pointing accuracy as a critical 
parameter significantly affects the location accuracy 
because of the pointing error introduced by axial mis-
alignments, non-perpendicularity, etc., and it is thus 
necessary to determine and compensate for the point-
ing error[4]. Laser tracker and autocollimator are a kind 
of automated precision optical instrument for the non-
contact measurement of small angles[5,6], which can be 
used in the calibration process of EODS, especially the 
autocollimator[4,7]. As shown in Fig. 1, the plane mirror 
is fixed on the inner gimbal of EODS, which is fixed on 
a high precision turntable. When the EODS generates 
the azimuth angle θA and elevation angle θE, the turn-
table rotates the same angles in opposite directions, 
respectively. The autocollimator will present the angle 
biases in horizontal and vertical directions, DA and DE. 
If the elevation bias is zero (DθE = 0), and the azi-
muthal bias DθA is minor, then 
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, p p
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 
∆ = ∆ − ≤ ≤  

	 (1)

If θE ≠ 0, DA ≠ DθA. It is mainly because the mirror is no 
longer parallel to the azimuth axis. And the azimuth 
rotation problem with an elevation is equivalent to a 
plane rotation around a non-orthogonal axis. Further, 
in some applications, it is very difficult to guarantee 
calibration apparatus as shown in Fig. 1, leading to 
more serious calibration process error. Hence, it is nec-
essary to determine the calibration process error. Note 
that geometric error compensation of EODS is not 
discussed here.

It is well known that quaternions can be used to 
speed up calculations involving rotations. A qua-
ternion is represented by just four scalars, in con-
trast to a 3×3 rotation matrix which has nine scalar 
entries[8]. Since invented by Hamilton in 1843, quater-
nions have been widely used in situations involving 
rotations. Octonions, which were discovered indepen-
dently by Cayley in 1845, are not widely used as 
quaternions. One of the most familiar applications is 
to describe the process whereby an electron emits or 
absorbs a photon[9], where it can be used to describe 
the spinor.

The octonions are an 8-dimensional algebra with 
basis 1, i, j, k ,l, il, jl, and kl. Octonions are non-
associative as (ij)l = -i(jl) = kl ≠ i(jl). An arbitrary 
octonion can be described as 
	 ,0 1 2 3 4 5 6 7 O a a a a a a a a= + + + + + + +i j k l il jl kl � (2)

Fig. 1. Calibration system of EODS.
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where a0 – a7 are real numbers.
Suppose p is a vector, it rotates 2θ around an axis n to q, 

define nQ cos sin ,q q= + en  Qn
* is the conjugate of Qn. en  

is the unit vector of n. And q can be calculated as 
	 *

n n .Q Q=q p � (3)
Suppose O8 is an octonion, Q4 is a quaternion and its 
conjugate Q4

*, it is facile to find

	
* * *

4 8 4 4 8 4 4 8 4O Q O Q (Q O )Q Q (O Q ).= = = � (4)
Similar to Eq. (3), the first four items of octonions in 
Eq. (2) are just a quaternion, of which the result can 
represent a spatial position rotation. Through relevant 
computations, the results in Eq. (4) can denote rota-
tion process, including position rotating and spinning. 
In the following, computations with Eq. (4) only involve 
last four items of octonions. In an arbitrary coordinate 
system OXYZ, we assume the basis of OX are i and il, 
that of OY are j and jl, and that of OZ are k and kl.

We have realized the decomposition of the rotation 
axis into two perpendicular axes in non-orthogonal 
rotation of a vector in other papers. In the actual cali-
bration process of EODS, the factor affecting autocol-
limator readout accuracy is the mirror’s rotation. It 
involves the plane rotation around a non-orthogonal 
axis. Take the plane Ω and line OP

����
 as the mirror and 

azimuth axis of EODS in Fig. 1, respectively. If the 
elevation angles of EODS and turntable are α and -α, 
respectively, the mathematical model can be established 
as shown in Fig. 2.

Assume the plane Ω will rotate 2θ around OP
����

, which 
has an inclined angle α with Ω. OC

����
 is the projection 

of OP
����

 in Ω. And we establish the coordinate system 
OXYZ, OA

����
 is an arbitrary vector in Ω, which has an 

inclined angle β with OC
����

. We define the inclined angle 
between OP

����
 and OA

����
 as η and establish the coordi-

nate system OX1Y1Z1 which is based on the plane AOP. 
Assuming OOA= jl, we can obtain the rotated octonion.

*
1 OP OA OPO Q O Q sin 2 cos cos 2 sin 2 sin ,q h q q h= = − + +l jl il

� (5)
where OPQ cos (cos sin )sin .q h h q= + +j k

In another coordinate system OX2Y1Z based on the plane 
AOZ, we will try to decompose the rotation around OP

����
 into 

spinning around OC
����

 and rotating around OD
����

. We define  

two respective angles as 2 and 2 .d g' '  The corresponding 
quaternions are OYQ cos sin ( sin cos )d d b b= + − +i j' '  
and .OZQ cos sing g= +' 'k  Combining the two quaterni-
ons, we have

	 OYZQ cos sin ( sin cos ) sin ,q d b b g= + − + +' 'i j k � (6)

where 2 2 2sin sin sin .q d g= +' '  We can obtain the 
decomposed rotation octonion as

( )
*

2 OYZ OA OYZO Q O Q 2sin cos cos cos 2
2 sin cos 2 sin sin cos .

d b q q

g q d b q

= = − +

+ +

'

' '

l jl
il kl

	�  (7)
From O1 = O2 and cos cos cos ,h a b=  we finally obtain 
the angles

	

( )
( )
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−

−
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

=

'
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Equation (8) indicates that the rotation decomposition 
is independent of β, which means the plane rotation 
can be divided into rotations around two perpendicu-
lar axes. However, 2d'  is not the real spinning angle, 
it can be shown that the real spinning angle is given 
by

	 1
0 2 2

sin cos2 2 sin .
1 sin sin

q a
d

q a
−

 
=  

 −
� (9) 

Meanwhile, the rotation of the angle 2g'  is around an 
axis 2OZ

�����
 which has an inclined angle δ0 with OD,

����
 and 

OD
����

 is its projection in the plane YOZ. We can hence 
divide the rotation process into three steps: spinning δ0, 
rotating 2 ,g'  and spinning δ0.

As presented in Fig. 3, the plane Ω1 rotates 2θ around 
OP
����

 to Ω2. Figure 3(left) shows the rotation impact on 
the autocollimator and Fig. 3(right) shows the mirror 
rotation decomposition. And 11OPC ,⊥ Ω  22OPC ,⊥ Ω  

1 1 2 1 2 1 3 1OD , OD C OC , OD , QC ,OQ⊥ Ω ⊥ ⊥ Ω ⊥
������ ������ ������ ����� ����

2QC ,OQ⊥
����� ����

1 1PC OC ,⊥
����� �����

2 2PC OC ,⊥
����� �����

1 2C QC 2 ,– q=

1 2POC POC .– – a= = The inclined angle between Ω1 

Fig. 2. Arbitrary non-orthogonal plane rotation. Fig. 3. Plane rotation diagram.
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and C1OC2 is δ0, hence, the plane rotation around OP
����

 
in Fig. 3 can be divided as follows:

(1)  Ω1 spins δ0 around 1OC  
������

to C1OC2, 1 2 0D OD .– d=

(2)  C1OC2 rotates 2g'  around 2OD ,
������

 1 2 .C OC 2– g= '

(3)  C1OC2 spins δ0 around 2OC
�����

 to Ω2, 2 3 0D OD .– d=
As the autocollimator readout is dependent on the 

rotation of reflecting mirror, in the first step of rotation 
decomposition, the autocollimator readout will change 
in the horizontal direction, and the value is

	 1
1 0 2 2

sin cossin .
1 sin sin

q a
q d

q a
−

 
= =  

 −
� (10)

In the second step, the mirror spins, the readout 
remains the same. In the third step, the mirror rotates 
δ0 around a slant axis, of which the inclined angle with 
the vertical axis is 2 .g'  The equivalent rotation angle 
in the horizontal direction is given by

	 1
2 0

1 tan (tan 2 cos 2 ).
2

q d g−= ' � (11)

As to the azimuth calibration, the non-orthogonal rota-
tion of 2θ around OP 

����
is equivalent to the rotation of 

(θ1+ θ2) around the vertical axis, and the rotation error 
θe is 
	 θe = 2θ - (θ1+ θ2)� (12)
Assume the rotated angle 2θ is −40°–40° and the 
inclined angle α is −30°–30°, according to Eq. (12), the 
rotation error is shown in Fig. 4, which indicates that 
the rotation error becomes serious as θ and α increase.

Hence, the rotation bias of azimuth in Fig. 1 and Eq. (1)  
can be rewritten as 
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(13)

The actual calibration apparatus is shown in Fig. 5. The 
angular range is −20°–20° for azimuth, and −20°–10° 
for elevation. The calibration process can be described 
as follows: the EODS rotates θE around its elevation 
axis, the turntable rotates -θE around its elevation axis, 
then the EODS rotates θA1 around its azimuth axis, 
the turntable rotates -θA2 around its azimuth axis. The 
autocollimator readout of azimuth is DA′, assuming the 
elevation bias is zero, from Eqs. (11) to (13), we can 
obtain
	 ( )A2 A1 EA

, .fq q q∆ = − +' � (14)

Figure 6 presents the test results before and after 
removing the calibration process error, with the 
error variance decreasing from 0.138(°)2 to 0.048(°)2.  
Figures 4 and 6 demonstrate that the calibration meth-
ods presented in Figs. 1 and 5 can introduce serious 
error in the calibration process.

In conclusion, we establish a mathematical model for the 
calibration of EODS. The nature of the problem is attrib-
uted to plane rotation around a non-orthogonal axis. It is 
proved that plane rotation can be decomposed into rota-
tions around two perpendicular axes by means of octo-
nions. We then realize the decomposition in three steps 
and finally obtain the calibration process error presented 
in Eqs. (13) and (14). The test results demonstrate that 
the calibration method can introduce signif﻿﻿icant error in 
pointing accuracy. With the error component equations, 

Fig. 4. Rotation error.

Fig. 5. EODS calibration apparatus.

Fig. 6. Pointing error of azimuth.
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the error is effectively separated, which guarantees the 
test data accuracy for further compensation.

This work was supported by the Support Program of 
National Ministry of Education of China (No. 625010110), 
the National Natural Science Foundation of China (No. 
61179043), and the China Scholarship Council. 

References
1.  J. Hilkert, IEEE Control Syst. Mag. 28, 26 (2008).

2.  K. Michael, IEEE Control Syst. Mag. 28, 47 (2008).
3. � Q. Yang, X. Zeng, and B. Zhao, Chin. Opt. Lett. 11, 061202 

(2013).
4.  A. Rue, IEEE Trans. Aerosp. Electron. Syst. AES-6, 697 (1970).
5. � M. Gao, Z. Dong, Z. Bian, Q. Ye, Z. Fang, and R. Qu, Chin. Opt. 

Lett. 9, 091201 (2011).
6.  J. Li and S. Wu, Chin. Opt. Lett. 11, 091202 (2013).
7. � Z. Zhang, X. Zhou, and D. Fan, Acta Aeronaut. Astronaut. Sin. 

32, 2042 (2011). 
8.  R. Goldman, Graph. Models 73, 21 (2011).
9.  J. Baez, Bull. Am. Math. Soc. 39, 145 (2001).


